3.2.13 \(\int \frac {c+d x}{\sqrt {-1+x^3}} \, dx\) [113]

3.2.13.1 Optimal result
3.2.13.2 Mathematica [C] (verified)
3.2.13.3 Rubi [A] (verified)
3.2.13.4 Maple [C] (warning: unable to verify)
3.2.13.5 Fricas [C] (verification not implemented)
3.2.13.6 Sympy [A] (verification not implemented)
3.2.13.7 Maxima [F]
3.2.13.8 Giac [F]
3.2.13.9 Mupad [B] (verification not implemented)

3.2.13.1 Optimal result

Integrand size = 15, antiderivative size = 275 \[ \int \frac {c+d x}{\sqrt {-1+x^3}} \, dx=-\frac {2 d \sqrt {-1+x^3}}{1-\sqrt {3}-x}+\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} d (1-x) \sqrt {\frac {1+x+x^2}{\left (1-\sqrt {3}-x\right )^2}} E\left (\arcsin \left (\frac {1+\sqrt {3}-x}{1-\sqrt {3}-x}\right )|-7+4 \sqrt {3}\right )}{\sqrt {-\frac {1-x}{\left (1-\sqrt {3}-x\right )^2}} \sqrt {-1+x^3}}-\frac {2 \sqrt {2-\sqrt {3}} \left (c+d+\sqrt {3} d\right ) (1-x) \sqrt {\frac {1+x+x^2}{\left (1-\sqrt {3}-x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}-x}{1-\sqrt {3}-x}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {1-x}{\left (1-\sqrt {3}-x\right )^2}} \sqrt {-1+x^3}} \]

output
-2*d*(x^3-1)^(1/2)/(1-x-3^(1/2))-2/3*(1-x)*EllipticF((1-x+3^(1/2))/(1-x-3^ 
(1/2)),2*I-I*3^(1/2))*(c+d+d*3^(1/2))*(1/2*6^(1/2)-1/2*2^(1/2))*((x^2+x+1) 
/(1-x-3^(1/2))^2)^(1/2)*3^(3/4)/(x^3-1)^(1/2)/((-1+x)/(1-x-3^(1/2))^2)^(1/ 
2)+3^(1/4)*d*(1-x)*EllipticE((1-x+3^(1/2))/(1-x-3^(1/2)),2*I-I*3^(1/2))*(( 
x^2+x+1)/(1-x-3^(1/2))^2)^(1/2)*(1/2*6^(1/2)+1/2*2^(1/2))/(x^3-1)^(1/2)/(( 
-1+x)/(1-x-3^(1/2))^2)^(1/2)
 
3.2.13.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.03 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.21 \[ \int \frac {c+d x}{\sqrt {-1+x^3}} \, dx=\frac {x \sqrt {1-x^3} \left (2 c \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},x^3\right )+d x \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {2}{3},\frac {5}{3},x^3\right )\right )}{2 \sqrt {-1+x^3}} \]

input
Integrate[(c + d*x)/Sqrt[-1 + x^3],x]
 
output
(x*Sqrt[1 - x^3]*(2*c*Hypergeometric2F1[1/3, 1/2, 4/3, x^3] + d*x*Hypergeo 
metric2F1[1/2, 2/3, 5/3, x^3]))/(2*Sqrt[-1 + x^3])
 
3.2.13.3 Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 278, normalized size of antiderivative = 1.01, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2419, 760, 2418}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {c+d x}{\sqrt {x^3-1}} \, dx\)

\(\Big \downarrow \) 2419

\(\displaystyle \left (c+\sqrt {3} d+d\right ) \int \frac {1}{\sqrt {x^3-1}}dx-d \int \frac {-x+\sqrt {3}+1}{\sqrt {x^3-1}}dx\)

\(\Big \downarrow \) 760

\(\displaystyle -d \int \frac {-x+\sqrt {3}+1}{\sqrt {x^3-1}}dx-\frac {2 \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x-\sqrt {3}+1\right )^2}} \left (c+\sqrt {3} d+d\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {-x+\sqrt {3}+1}{-x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {1-x}{\left (-x-\sqrt {3}+1\right )^2}} \sqrt {x^3-1}}\)

\(\Big \downarrow \) 2418

\(\displaystyle -\frac {2 \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x-\sqrt {3}+1\right )^2}} \left (c+\sqrt {3} d+d\right ) \operatorname {EllipticF}\left (\arcsin \left (\frac {-x+\sqrt {3}+1}{-x-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-\frac {1-x}{\left (-x-\sqrt {3}+1\right )^2}} \sqrt {x^3-1}}-d \left (\frac {2 \sqrt {x^3-1}}{-x-\sqrt {3}+1}-\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x-\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {-x+\sqrt {3}+1}{-x-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{\sqrt {-\frac {1-x}{\left (-x-\sqrt {3}+1\right )^2}} \sqrt {x^3-1}}\right )\)

input
Int[(c + d*x)/Sqrt[-1 + x^3],x]
 
output
-(d*((2*Sqrt[-1 + x^3])/(1 - Sqrt[3] - x) - (3^(1/4)*Sqrt[2 + Sqrt[3]]*(1 
- x)*Sqrt[(1 + x + x^2)/(1 - Sqrt[3] - x)^2]*EllipticE[ArcSin[(1 + Sqrt[3] 
 - x)/(1 - Sqrt[3] - x)], -7 + 4*Sqrt[3]])/(Sqrt[-((1 - x)/(1 - Sqrt[3] - 
x)^2)]*Sqrt[-1 + x^3]))) - (2*Sqrt[2 - Sqrt[3]]*(c + d + Sqrt[3]*d)*(1 - x 
)*Sqrt[(1 + x + x^2)/(1 - Sqrt[3] - x)^2]*EllipticF[ArcSin[(1 + Sqrt[3] - 
x)/(1 - Sqrt[3] - x)], -7 + 4*Sqrt[3]])/(3^(1/4)*Sqrt[-((1 - x)/(1 - Sqrt[ 
3] - x)^2)]*Sqrt[-1 + x^3])
 

3.2.13.3.1 Defintions of rubi rules used

rule 760
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(- 
s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3]) 
*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x 
] && NegQ[a]
 

rule 2418
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 + Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 + Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 - Sqrt[3])*s + r*x))), x] + S 
imp[3^(1/4)*Sqrt[2 + Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 - Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[(-s)*((s + r*x)/((1 - S 
qrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[ 
3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && 
 EqQ[b*c^3 - 2*(5 + 3*Sqrt[3])*a*d^3, 0]
 

rule 2419
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(c*r - (1 + Sqrt[3])*d*s)/r 
  Int[1/Sqrt[a + b*x^3], x], x] + Simp[d/r   Int[((1 + Sqrt[3])*s + r*x)/Sq 
rt[a + b*x^3], x], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && NeQ[b*c^3 - 
2*(5 + 3*Sqrt[3])*a*d^3, 0]
 
3.2.13.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 1.62 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.24

method result size
meijerg \(\frac {d \sqrt {-\operatorname {signum}\left (x^{3}-1\right )}\, x^{2} {}_{2}^{}{\moversetsp {}{\mundersetsp {}{F_{1}^{}}}}\left (\frac {1}{2},\frac {2}{3};\frac {5}{3};x^{3}\right )}{2 \sqrt {\operatorname {signum}\left (x^{3}-1\right )}}+\frac {c \sqrt {-\operatorname {signum}\left (x^{3}-1\right )}\, x {}_{2}^{}{\moversetsp {}{\mundersetsp {}{F_{1}^{}}}}\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};x^{3}\right )}{\sqrt {\operatorname {signum}\left (x^{3}-1\right )}}\) \(65\)
default \(\frac {2 c \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {-1+x}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, F\left (\sqrt {\frac {-1+x}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}-1}}+\frac {2 d \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {-1+x}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \left (\left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) E\left (\sqrt {\frac {-1+x}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )+\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) F\left (\sqrt {\frac {-1+x}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )\right )}{\sqrt {x^{3}-1}}\) \(291\)
elliptic \(\frac {2 c \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {-1+x}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, F\left (\sqrt {\frac {-1+x}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}-1}}+\frac {2 d \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {-1+x}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x +\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \left (\left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) E\left (\sqrt {\frac {-1+x}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )+\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) F\left (\sqrt {\frac {-1+x}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, \sqrt {\frac {\frac {3}{2}+\frac {i \sqrt {3}}{2}}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )\right )}{\sqrt {x^{3}-1}}\) \(291\)

input
int((d*x+c)/(x^3-1)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/2*d/signum(x^3-1)^(1/2)*(-signum(x^3-1))^(1/2)*x^2*hypergeom([1/2,2/3],[ 
5/3],x^3)+c/signum(x^3-1)^(1/2)*(-signum(x^3-1))^(1/2)*x*hypergeom([1/3,1/ 
2],[4/3],x^3)
 
3.2.13.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 18, normalized size of antiderivative = 0.07 \[ \int \frac {c+d x}{\sqrt {-1+x^3}} \, dx=2 \, c {\rm weierstrassPInverse}\left (0, 4, x\right ) - 2 \, d {\rm weierstrassZeta}\left (0, 4, {\rm weierstrassPInverse}\left (0, 4, x\right )\right ) \]

input
integrate((d*x+c)/(x^3-1)^(1/2),x, algorithm="fricas")
 
output
2*c*weierstrassPInverse(0, 4, x) - 2*d*weierstrassZeta(0, 4, weierstrassPI 
nverse(0, 4, x))
 
3.2.13.6 Sympy [A] (verification not implemented)

Time = 0.78 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.20 \[ \int \frac {c+d x}{\sqrt {-1+x^3}} \, dx=- \frac {i c x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {1}{2} \\ \frac {4}{3} \end {matrix}\middle | {x^{3}} \right )}}{3 \Gamma \left (\frac {4}{3}\right )} - \frac {i d x^{2} \Gamma \left (\frac {2}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {2}{3} \\ \frac {5}{3} \end {matrix}\middle | {x^{3}} \right )}}{3 \Gamma \left (\frac {5}{3}\right )} \]

input
integrate((d*x+c)/(x**3-1)**(1/2),x)
 
output
-I*c*x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3)/(3*gamma(4/3)) - I*d*x** 
2*gamma(2/3)*hyper((1/2, 2/3), (5/3,), x**3)/(3*gamma(5/3))
 
3.2.13.7 Maxima [F]

\[ \int \frac {c+d x}{\sqrt {-1+x^3}} \, dx=\int { \frac {d x + c}{\sqrt {x^{3} - 1}} \,d x } \]

input
integrate((d*x+c)/(x^3-1)^(1/2),x, algorithm="maxima")
 
output
integrate((d*x + c)/sqrt(x^3 - 1), x)
 
3.2.13.8 Giac [F]

\[ \int \frac {c+d x}{\sqrt {-1+x^3}} \, dx=\int { \frac {d x + c}{\sqrt {x^{3} - 1}} \,d x } \]

input
integrate((d*x+c)/(x^3-1)^(1/2),x, algorithm="giac")
 
output
integrate((d*x + c)/sqrt(x^3 - 1), x)
 
3.2.13.9 Mupad [B] (verification not implemented)

Time = 8.96 (sec) , antiderivative size = 374, normalized size of antiderivative = 1.36 \[ \int \frac {c+d x}{\sqrt {-1+x^3}} \, dx=-\frac {2\,c\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}}-\frac {2\,d\,\left (\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\mathrm {F}\left (\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )-\left (-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\mathrm {E}\left (\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )\right )\,\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}}{\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \]

input
int((c + d*x)/(x^3 - 1)^(1/2),x)
 
output
- (2*c*((3^(1/2)*1i)/2 + 3/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 
 - 3/2))^(1/2)*((x + (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*( 
-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticF(asin((-(x - 1)/((3^(1/2)* 
1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 3/2)))/((( 
3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 - 1/2)*(( 
3^(1/2)*1i)/2 + 1/2) + 1) + x^3)^(1/2) - (2*d*(((3^(1/2)*1i)/2 - 1/2)*elli 
pticF(asin((-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/ 
2)/((3^(1/2)*1i)/2 - 3/2)) - ((3^(1/2)*1i)/2 - 3/2)*ellipticE(asin((-(x - 
1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 
 - 3/2)))*((3^(1/2)*1i)/2 + 3/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i 
)/2 - 3/2))^(1/2)*((x + (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/2))^(1/2 
)*(-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2))/(((3^(1/2)*1i)/2 - 1/2)*((3^(1/ 
2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) + 
x^3)^(1/2)